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Numerical simulations were performed of the evolution of the Kelvin-Helmholtz 
instability in planar, free shear layers, resulting from coflow past a splitter plate. The 
calculations solved the time-dependent inviscid compressible conservation equations. 
New algorithms were developed and tested for inflow and outflow boundary 
conditions. Since no turbulence subgrid modelling was included, only the large-scale 
features of the flow are described. The transition from laminar flow was triggered by 
transverse pressure gradients and subsequent vorticity fluctuations at the shear layer, 
near the tip of the splitter plate. The calculations were performed for a range of 
free-stream velocity ratios and sizes of the chamber enclosing the system. The 
simulations showed that the resulting mixing layers have more of the faster fluid than 
the slower fluid entrained in the roll-ups. This effect is in general agreement with the 
results of recent splitter-plate experiments of Koochesfahani, Dimotakis & Broadwell 
(1983). The calculated mixing asymmetry is more apparent when the velocity ratio 
of the two streams is larger, and does not depend significantly on the separation 
between the walls of the chamber. 

1. Introduction 
This paper describes numerical simulations of shear flows and the development and 

evolution of coherent structures. There are two aspects of this problem which are 
addressed here. The first is developing the numerical model that was used in these 
studies. In particular, we are concerned with the treatment of inflow and outflow 
boundary conditions suitable for both compressible and incompressible flows. The 
second aspect is using this model to describe shear flows in a splitter-plate 
configuration. 

The problem of developing the proper computational tools has been discussed 
previously (Boris et al. 1985). We elaborate on this subject in $3. The numerical model 
we use is a restructured version of the FAST2D computer code. This incorporates 
the Flux-Corrected Transport (FCT) continuity equation algorithm (Boris 19763 ; 
Boris t Book 1976) which has been tested extensively for shock, blast, detonation, 
fluid instability and beam-generated turbulence calculations (e.g. Book et al. 1980 ; 
Oran et al. 1982; Picone & Boris 1983). Since the algorithm is explicit, the code is 
best for studying flows that move at a substantial fraction of the speed of sound in 
the material. Using timestep-splitting techniques, FCT may be coupled to algorithms 
representing other physical processes, such as diffusion and conduction (Oran & Boris 
1981). 
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The second aspect, application of the model, is the main goal of this work. We have 
used the model to simulate time-dependent flows in the splitter-plate configuration 
for which substantial data exist on the transition to  turbulence. Our interest here 
is in the entrainment and mixing in the resulting coherent structures in the flow. I n  
$4 we describe the computational results and their implications. 

2. Background 
The development and structure of turbulent flows is the focus of intense study. We 

now know that flows which previously were thought to be totally chaotic and 
statistical in nature are dominated by the persistence of relatively large 
structures. These coherent structures were ignored since their existence was masked 
or de-emphasized by experimental averaging techniques. The classical description of 
turbulence and the mechanisms responsible for its development are now considered 
deficient in their explanations of these transient but organized and persistent 
structures which transport much of the stress in a shear layer. 

The classical description of turbulence evolved from the observed behaviour of fluid 
flows as a function of Reynolds number. Many flows exhibit a series of sudden 
transitions to  new flow patterns as the Reynolds number is increased. Each transition 
results in an increasingly complicated flow, and at high Reynolds number the flows 
become irregular and appear chaotic in both space and time. The transitions to  the 
succession of flow patterns may be caused by a sequence of fluid instabilities, each 
of which breaks some symmetry in the previously stable flow pattern and introduces 
some new scale in the new flow pattern (Liepmann 1979). The transition to a purely 
chaotic flow was postulated to  occur through an  infinite succession of instabilities, 
each contributing to the increasing frequency content of the flow (Landau & Lifshitz 
1959). 

Several experimental observations have seriously eroded confidence in the com- 
pleteness of such a turbulence model for physical flows. First, although laboratory- 
created grid turbulence comes close, no flow has yet been shown to exhibit pure, 
homogeneous isotropic turbulence in the classical sense. Such a state is really a 
limiting condition. Further, since coherent strucures exist on the larger scales, it is 
reasonable to assume the existence of similar structures on all scales larger than the 
dissipation scale. Second, the transition to turbulence does not occur through an 
infinite succession of instabilities, but after the appearance of relatively few instab- 
ilities, typically three or four. This has led to the postulate of a theoretical connection 
between strange-attractor theory and transition to turbulence. Third, intermittency 
in free turbulent shear layers indicates the presence of a thin, sharp interface between 
turbulent fluid and irrotational fluid. This finding leads to questions about whether 
such sharp interfaces can be represented as a diffusive effect. Finally, the recent 
discovery that coherent structures dominate flows which were previously believed to  
approach pure turbulence directly causes us to reconsider the basic assumptions in 
the classical theory of turbulence. 

The search for new concepts of the nature of turbulence has centred on understanding 
the mechanisms of the transition to turbulence in several simple fluid flows. Shear 
flows generated by splitter-plate partitions (e.g. Brown & Roshko 1974; Browand & 
Weidman 1976; Roshko 1976) exhibit most of the troublesome intricacies associated 
with the transition and have properties that are relevant to practical applications. 
Both larger and smaller scales of chaotic fluid motion develop in these systems. Flow 
near the sharp trailing edge of the splitter plate, where the parallel free streams first 
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meet, may initially be laminar for even high Reynolds numbers, and several distinct 
transitions are easily discerned before the onset of an apparently fully turbulent shear 
layer. It is still quite difficult, however, to pinpoint at which stage in the flow the 
label ‘turbulent ’ becomes applicable. Indeed, large-scale coherent structures have 
been found to dominate well downstream in flows which appear chaotic on smaller 
scales. By using similarity arguments, for example, we see that the splitter-plate flow 
is always dominated by ever larger coherent structures. Through flow-visualization 
experiments, a great deal of insight has been achieved into the exact mechanisms 
involved in the individual instabilities as well as some indication of the sequence of 
appearance of various scales of motion. 

The shear layer generated by the splitter plate is subject to the Kelvin-Helmholtz 
instability. Small perturbations in the flow grow into nonlinear waves which break 
and roll up, transforming the original vorticity of the shear layer into isolated clumps. 
The primary wavelength generated by the instability is usually that of the fastest- 
growing mode for that particular geometry or of some impressed wavelength 
determined by boundary conditions or initial conditions. Further development of 
the shear layer proceeds through the pairing of vortex clumps, a process which may 
be repeated many times downstream. One of the effects of pairing is to generate 
subharmonics of the original unstable wavelength, but smaller-wavelength disturb- 
ances are created as well. These disparate wavelengths arise from at least two causes : 
imperfect pairing due to small fluctuations in the flow leaving an unpaired vortex 
which then merges with a previously formed pair (Browand & Winant 1973), and the 
generation of small-scale disturbances in the interaction of the cores of the two 
vorticity clumps (Zabusky 1981). 

A number of experimental investigations have shown that the large spanwise 
coherent structures dominate the entrainment and mixing processes a t  the shear 
layers (Winant & Browand 1974; Brown & Roshko 1974; Dimotakis & Brown 1976; 
Breidenthall981). Fluid entrained from the free streams can be transported unmixed 
across the shear layer. When chemical reaction between the entrained fluids is 
possible, it  takes place preferentially at the regions associated with the coherent 
structures. In many practical applications, such as combustion and chemical lasers, 
mixing layers are important and i t  is extremely helpful to understand mechanisms 
by which mixing can be enhanced or retarded. 

Recent splitter-plate experiments by Koochesfahani et al. (1983) show that more 
high-speed fluid than low-speed fluid is entrained in the coherent structures. The 
experimental work of Konrad (1976) suggested that the entrainment at the shear 
layer is not necessarily symmetric. Broadwell & Breidenthal (1982) developed a 
simple mixing model which may explain the observed results. This asymmetry is not 
predicted by models based on gradient transport and eddy diffusivity. It has also not 
been noted in spectral simulations of unsteady shear flows with periodic boundary 
conditions (Riley & Metcalfe 1980), or in previous simulations of the splitter-plate 
geometry using either vortex (Ashurst (1979) or finite-difference (Davis & Moore 1985) 
methods. 

In  the work presented below, we describe numerical simulations of two-dimensional 
shear flows of a splitter-plate geometry. Our goal is to produce accurate enough 
calculations of the time evolution of the major physical quantities so that we can 
analyse the flow behaviour and test concepts of the transition to turbulence. We are 
interested in the initial transient behaviour, the resulting unsteady pattern of 
structures, and the symmetry properties of the composition of their associated 
mixing layers. 
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3. The numerical model 
3.1. Flux-corrected transport 

The FAST2D simulation model was used to  perform the shear-flow calculations 
described below. This program solves the inviscid, compressible, time-dependent, 
conservation equations for mass, momentum and energy. Algorithms describing 
gravity, molecular and thermal diffusion, and chemical reactions with energy release 
are also a part of the model, but were not used in the calculations presented here. 
The algorithms describing the various physical processes are coupled by timestep 
splitting so the corresponding physical effects can be turned on or off independently 
as required by the particular problem being studied. No subgrid turbulence pheno- 
menology has been included at this stage of development of the model. 

The conservation equations are solved using Flux-Corrected Transport (Boris & 
Book 1976), a nonlinear, monotone, finite-difference technique which conserves mass, 
momentum and energy and preserves the physical positivity property of fluids. FCT 
is particularly useful in problems where sharp discontinuities arise and are maintained 
throughout the calculations. These discontinuities may be shocks or contact surfaces, 
or, as in the case presented in this paper, interfaces in material density. FCT adds 
linear velocity-dependent diffusion to a high-order algorithm during convective 
transport. This prevents dispersive ripples from arising, and thus ensures that all 
conserved quantities remain monotone and positive. Fourth-order accuracy is 
maintained by subtracting out this added diffusion during a second nonlinear 
antidiffusion stage of the algorithm in regions where i t  is not needed to preserve 
monotonicity. The algorithm has been used extensively in one-, two- and three- 
dimensional flows (e.g. Oran et al. 1982; Picone et al. 1983; Kailasanath & Oran 
1985a,b; Fyfe et al. 1985). 

Another important feature of FCT is its ability to separate grid motions from the 
fluid flow. This allows us to use variably spaced grids as well as moving adaptive grids 
(Book et al .  1980; Oran et a l .  1982). Figure 1 is an example of a convergence test that 
was done for the calculation of a shock which underwent transition to  a detonation. 
A shock propagating in a tube containing a mixture of hydrogen, oxygen, and argon 
reflects from a rigid wall. Upon reflection, the temperature and pressure are raised 
high enough to initiate chemical reactions. The chemical reactions occur first near 
the wall, where a reaction wave eventually forms. The reaction wave overtakes the 
reflected shock and the result is a propagating detonation. This problem was studied 
computationally using FCT coupled to a chemical-kinetics model, and the results were 
compared with experimental shock-tube data (Oran et al. 1982). Figure 1 shows a 
series of resolution tests for one of the cases studied. The first calculation, (a) ,  used 
a uniform, stationary grid with a cell spacing of 0.07 em. The second and third 
calculations, ( b )  and (c), both used moving, variably spaced grids with different 
minimum spacing around the detonation front. This is a difficult problem to 
formulate because the grid was both variable and moving. However, the cost benefits 
of using such flexible grids are substantial. Resolution tests for multidimensional 
versions of this model with variably spaced and moving grids, have been reported 
by, e.g., Book et al. (1980) and Kailasanath & Oran (1985a, b) .  

The particular version of FCT used here is JPBFCT, which is similar to ETBFCT 
(Boris 1976a). This routine solves the one-dimensional continuity equation in 
Cartesian, cylindrical, spherical or generalized nozzle geometries, depending on the 
value of a logical switch. Since the algorithm is one-dimensional, timestep splitting 
in the various directions is used to construct two- and three-dimensional codes. The 
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FIGURE 1. Resolution tests of a chemically reactive Flux-Corrected Transport calculation. 
Temperature versus position for a propagating detonation for three choices of computational grid : 
(a) uniform grid with spacing 0.07 cm; (a) variably spaced grid with minimum spacing around the 
detonation front of 0.07 cm, maximum spacing far from the front of 2.00 cm; (c) variably spaced 
grid as in (b) with minimum spacing of 0.035 cm and maximum spacing of 2.00 cm. Stretched and 
finely gridded regions are marked in (c). 

two-dimensional Cartesian calculations described below were performed with the 
general code with the gravity, diffusion, chemistry, and energy-release options not 
used (discussed elsewhere by Oran & Boris 1981). 

3.2. Computational grid 

The computational grid was set up initially in the calculations and then held fixed 
in time. A typical grid is shown in figure 2 (a ) .  Finely spaced cells clustered around 
the centreline where the instability first occurs and the coherent structures form. The 
splitter plate is on the centreline and its trailing edge is at Y = 2.0 cm. The Y-direction 
is well resolved near the centreline. The velocity of the lower stream ( v f )  is always 
considerably larger than that of the upper stream ( V,).  As the large spanwise vortices 
propagate downstream, they merge and grow. The idea is to have the larger 
computational cells (further downstream and further from the centreline) resolve the 
larger coherent structures, and the smaller cells resolve the smaller structures. 



206 

(0 )  

F.  F.  Grinstein, E .  S. Oran and J .  P .  Boris 

Wall 

Slow 

2 
Splitter plate 

Fast 

Wall 

B 
€ 

y' 
FIGIJRE 2. (a) Sample computational grid used in the calculations. Minimum X-spacing = 0.024, 
maximum X-spacing = 0.24, minimum Y-spacing = 0.060, maximum Y-spacing (left) = 0.24, 
maximum Y-spacing (right) = 0.46. The splitter plate is on the centreline, with its trailing edge 
located at Y = 2.0 cm. (b)  Schematic diagram showing the initial and boundary conditions for the 
splitter-plate simulation. 

Grid spacing was varied in different, calculations to  (i) check the effects of 
resolution, (ii) test the implementations of various boundary-condition algorithms, 
and (iii) test the effects of physically different boundaries. Maxima of 100 cells 
across the mixing layer (X-direction) and 170 cells in the streamwise direction 
(Y-direction) were used. The first 20 cells in the Y-direction were in the region 
behind the tip of the splitter plate. The mesh spacing varied in the range 0.0244.24 cm 
in the X-direction, and 0 . 0 W . 4 6  cm in the Y-direction. In general, the spacing should 
not stretch or compress more than 20-30 yo from cell to cell. 

50 yo. The 
observed differences in the calculations made minor differences in the quantitative 
results, and no differences in the qualitative observations. In  an Eulerian finite- 
difference calculation, varying the grid spacing is the most rigorous test of a 
computational model. The results presented in $4 have been calculated on a 60 x 150 
grid. A discussion of the sensitivity of the results to the location of the boundaries 
and the boundary conditions used in the calculations is given a t  the end of $4. 

Typical convergence tests varied the spacing in both directions by 
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3.3. Boundary conditions 
As shown in figure 2 ( b ) ,  the top and the bottom of the computational region are 
perfectly reflecting hard walls. These boundary conditions are implemented by 
assuming that the X-component of the velocity at the guard cell is equal to minus 
the X-component of the velocity at the first cell inside the domain. These types of 
boundary conditions are also imposed at  the splitter plate to ensure that there is no 
flux of material across its surface. Assuming a free-slip condition at the walls and 
at the splitter plate is a first approximation that we use in this inviscid calculation. 
It is unlikely that the effects of boundary layers at the walls would considerably affect 
the calculated flowfield. In particular, the location and presence of the walls does not 
significantly affect the calculated asymmetries described below (see $4.3). 

Fluid viscosity and boundary layers are important only a t  the splitter plate and 
at  the initial stage in which the Kelvin-Helmholtz instability is triggered. The 
subsequent instability mechanism is essentially an inviscid phenomenon, and the 
effect of viscosity is only to damp the process. The boundary layers (not accounted 
for in the calculations) provide a lengthscale, namely the initial thickness 8, of the 
shear layer. Because of viscous diffusion, the laminar streams should give rise to a 
wake-like velocity profile immediately downstream of the trailing edge of the splitter 
plate.The profile then gradually relaxes to a shear-layer velocity distribution, with 
the necessary inflexion point for the flow to become unstable with respect to small 
wavy disturbances (Rayleigh 1880). 

In our numerical model we start out with a step-function velocity profile across 
the shear layer. This profile smooths out during the initial integration cycles, and 
relaxes to a shear-layer profile with an effective non-zero initial thickness 8;. The 
experiments at high Reynolds numbers indicate that the spatially growing instabilities 
are only affected by the Strouhal number St = f8/ V,, where f is the most amplified 
frequency, 8 is the shear-layer thickness and V, the mean free-stream velocity 
(Freymuth 1966; see also, e.g., Ho & Huang 1982). Because these characteristic flow 
parameters can be effectively reduced to St alone, we can expect that this inviscid 
two-dimensional treatment can provide a reasonable approximation to many of the 
features of the flow dynamics for high Reynolds number. The value of 8; essentially 
affects only the frequency of the most unstable mode in the initial region of the mixing 
layers. Typical estimates for the Strouhal number, at the initial stages of our 
simulations, where 8; is equal to one cell in the cross-stream direction, give St = 0.040. 
This is in reasonable agreement with the value St,  = 0.032+0.002 for the most 
unstable mode from linear inviscid stability theory (Ho & Huerre 1984). 
Thefundamentaldifficultywhensolvingproblems withoutflow-boundary conditions 

is that information about the flow beyond the computational mesh is required to make 
the fluid near the boundaries behave properly. This problem is generally handled by 
using guard cells. Guard cells are just outside the computational region, and are not 
actually part of the calculation. They are used to tell the boundary cells how the 
outside world is behaving. The simplest model of outflow in guard cells is to  say that 
the momentum, energy, and density do not change, i.e. there is effectively zero 
gradient. This causes problems in extended calculations since i t  does not provide a 
way for the solutions to relax to background conditions. 

An outflow-boundary algorithm was developed to use with the FCT algorithm 
described in $3.1. This algorithm defines the values of quantities at the guard cell 
from a zeroth-order extrapolation of the value at  the boundary cell. Ir. addition, i t  
assumes that there is a slow local relaxation outside the mesh towards the known 
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ambient value. The strong nonlinear stabilizing properties of the FCT method appear 
to eliminate instabilities which occur in other non-local methods when low-order 
extrapolations are used for specifying boundary conditions (Turkel 1980). Previous 
tests (Boris et al. 1985) have suggested this as a simple, yet effective, approach to the 
outflow-boundary conditions. Such an expression is expected to be an approximation 
to the lowest-order terms in an asymptotic expansion, valid for times short compared 
to a sonic transit time of the system. 

For two-dimensional incompressible calculations, Davis & Moore (1985) specify 
background values and use zero-gradient conditions at infinite distances from the 
computational region. Their boundary conditions are implemented by mapping the 
infinite physical space into a finite computational domain. Their approach to outflow 
has important elements in common with the method used here. Both methods stretch 
the mesh to get the boundary far from the region of interest. 

The algorithm is implemented by assuming that the pressure in the guard cell is 
extrapolated from the boundary cell but relaxes to a prespecified ambient value. 
Specifically, if Y is the streamwise (outflow) direction, 

Yg- Y, 
5- Y, Pg = P,+ (Pamb - p n )  

where Pg is the guard-cell pressure, Pamb the ambient pressure, Pn is the boundary 
pressure and 5, Y, and Y, correspond to the positions of the guard cell, the boundary 
cell and the cell at the edge of the splitter plate, respectively. This expression is 
derived by assuming that the pressure reaches its ambient value at  Y = 00, and Pg 
is then obtained by linearly interpolating (in the variable 1/( Y -  Y,)) between P, and 
Pam,,. This is a one-dimensional first approximation to the correct outflow-boundary 
condition. 

The density and momenta are extrapolated according to 

P g  = Pny (2) 

Further improvements for Pg are possible by considering higher-order interpolation 
schemes, i.e. by including the information on the pressure at other cells in the domain 
in addition to that at the boundary cells. In particular, it might be useful to include 
an explicit dependence on physical parameters of the problem such as the separation 
between the walls, the size and rate of flow of the structures and the local speed of 
sound. This requires further physical assumptions about conditions outside of the 
computational domain in the downstream direction. 

In our preliminary calculations, we used inflow-boundary conditions which 
specified constant values of the mass, momentum and energy of the inflowing gas. 
Also, the inflow boundary was at the tip of the splitter plate. These conditions, 
however, did not correctly provide the feedback between the fluid just entering the 
computational domain and the disturbances created downstream by the Kelvin- 
Helmholtz roll-ups and vortex merging. Pressure pulses from downstream disturb- 
ances create small transverse flows at the trailing edge of the splitter plate. These 
pulses re-initiate the instability and lead to the next coherent vortex roll-up. When 
the inflow pressure was held equal to the ambient pressure, the first vortex structures 
formed very far downstream. They eventually flowed off the computational domain, 
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and the instability appeared to die out. The apparent reason for this is that the 
pressure perturbations arriving at the inflow boundary were cancelled by the non- 
physical condition which kept the inflow pressure constant. A more physically 
reasonable treatment of the inflow response to pressure fluctuations was required. 

The inflow-boundary conditions we use now specify the inflow density and velocity, 
and then use a zero-slope condition on the pressure at the inflow boundary to derive 
the energy. This algorithm allows pressure differences between the top and bottom 
streams to generate transverse flows. In addition, a short inflow plenum is modelled 
by including the 2.0 cm region behind the end of the splitter plate in the computational 
domain, as shown in figure 2(a) .  

With a fluctuating inflow-pressure condition, it is important to relax the outflow 
pressure toward an ambient value. This is because a base pressure for the system has 
to be specified in compressible calculations when the value of the inflow pressure is 
allowed to vary. Relaxation of the density and momentum towards their ambient 
values is less important on outflow because these values are given at  the inflow 
boundary. The long-time values of all the variables must be available to the solution 
from the beginning to prevent secular deviation of the calculated flow. 

4. Splitter-plate simulations 
As shown in figure 2(b) ,  two coflowing streams of air are initially separated by a 

thin plate and then enter a long chamber. The simulations are initialized by assuming 
that both gas streams have the same initial pressure (1 atm) and temperature (298 K), 
and have initial uniform velocities V, and V,. The values considered for V, and V, 
ranged from 1.0 x lo4 to 2.0 x lo4 cm/s, and from 0 to 4.0 x lo3 cm/s, respectively. 
The range V,/ V, of 0-0.2 was studied. Since the velocity of sound in this mixture is 
typically of the order of 3.5 x lo4 cm/s, the flows were subsonic and hence virtually 
incompressible. The FCT algorithm used to describe the convection flow, however, 
is fully compressible, so sound waves are resolved in the system and acoustic delay 
times for pressure waves are properly accounted for. 

The small perturbation which initiates the transition from laminar to turbulent 
flow occurs at  the first time step of the calculation. It is analogous to using a delta- 
function perturbation at the centre in a periodic simulation of two equal and opposite 
streams. The perturbation generates small pressure gradients and diffuses vorticity 
at the shear layer, near the edge of the splitter plate. The initial step-function profile 
for the downstream velocity is smoothed out after the first few convection cycles. As 
a consequence, the initially uniform pressure develops a small gradient across the 
thickening shear layer in the region close to the edge of the splitter plate where the 
free streams meet. This disturbance moves downstream as the integration proceeds, 
generating the transverse flows which trigger the instability. 

4.1. Transition from laminar to turbulent flow 
Figures 3-7 show the development of the flow for the case in which V, = 1 .O x lo4 cm/s 
and V ,  = 2.0 x lo3 cm/s (i.e. V,/V,  = 0.2). The time evolution of the flow is shown 
through sequences of isovorticity and number-density ratio (R) contour plots, where 

(5) R=- 

The N' and Ns are the number densities corresponding to the faster and slower 
inflowing streams, respectively. R varies between 0 and 1 ,  which corresponds to 100 yo 

N 
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FIQURE 3. Typical initial stages in the development of the Kelvin-Helmholtz unstable flow for the 
splitter-plate problem. The right edge of the splitter plate is located at z on the centreline. 
V, = 1.0 x lo4 cm/s, V, = 2.0 x lo3 cm/s. Contours of the mixing ratio R,  as defined by (5), for 0.3, 
0.4, 0.5, 0.6, and 0.7.  

0 

of the slower stream or 100 Yo of the faster stream, respectively. The choice of negative 
isovorticity contours in figures 4 and 7 gives the best flow visualization. 

I n  figures 3 and 5, R is contoured in the interval 0.3-0.7. This particular choice 
of contour levels is useful for describing the mixing. The transition from a uniform 
shear flow first appears as a pair of vortices forming just ahead of the tip of the plate, 
shown at 0.525 ms in figure 3. As this pair travels downstream, it grows steadily owing 
to the vorticity which is being fed into i t  from both directions. I n  addition, smaller 
structures are entrained by the roll-up on the side of the splitter plate. As the system 
evolves, the smaller structures have more time to grow before they are engulfed. The 
last panel, at 0.975 ms, shows one of these small structures, now a vortex, being shed 
and merging with the large vortex. 

The isovorticity contours in figure 4 show the shear layer breaking up. New 
vorticity clumps form and subsequently pair with the leading vortex. A relation 
exists between the growth of the leading vortex, through the pairing process, and the 
rate at which new vortices are shed. Pressure disturbances are generated by the fluid 
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FIGURE 4. Sequence of isovorticity contours for the initial stages in the development of the 
Kelvin-Helmholtz unstable flow for the splitter-plate problem. Contour levels are equally spaced, 
with an interval of -6.0 x lo* s-l. The vorticity at the outermost contour is - 2 . 0 ~  
decreasing to a minimum of -9.8 x lo4 s-l near the tip of the splitter plate. 

accelerations caused by downstream roll-ups and mergings. These disturbances can 
reinitiate the instabilities close to the trailing edge of the splitter plate. The choice 
of the inflow boundary condition was crucial in allowing for this physical feedback 
mechanism to occur. This concept was tested by damping the acoustic pulses reaching 
the inflow boundary. This was the initial inflow-boundary condition described above 
in $3, where the pressure at the tip of the splitter plate was set equal to the ambient 
pressure. 

Figure 5 is a continuation of the same calculation at later times, from 0.975 to 
2.620 ms, Small vortices are shed at about 1.0-1.6 ern from the tip of the splitter 
plate. Larger vortices have moved downstream. The more frequent mergings with the 
leading vortex, like the one seen in figure 4, are responsible for its faahr growth. This 
growth becomes more pronounced as the large structure moves into the coarser part 
of the computational grid (say for t > 2.0 ms), where it is somewhat spread out 
by increased numerical diffusion. Pairings between the newly shed vortices are also 
possible now, as they become more separated from the leading vortex. By 2.62 ms, 
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FIGURE 5. Contours of R, as in figure 3, for later stages in the development of the flow. 
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FIGURE 6. Contours for equally spaced values of R in the interval 0 . 7 0 4 9 7 ,  for later stages in 
the development of the flow in the case of figure 3. 

the last panel in figure 5, merging vortices move off the right edge of the computational 
system and unperturbed fluid moves in on the left. 

Figure 6 shows contours of R in the range 0.70-0.97. This choice of contour levels 
emphasizes the portions of the faster fluid which are transported largely unmixed 
across the shear layer. Isovorticity contours corresponding to these frames are shown 
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FIGURE 7. Isovorticity contours, for later stages in the development of the flow in the 
case of figure 3. Isovorticity levels as in figure 4. 
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in figure 7 .  We see that the growth pattern of the structures appears to follow a 
similarity law. This is consistent with the flow having a lengthscale which increases 
downstream proportionally to the distance from an origin of similarity located just 
ahead of the edge of the splitter plate. By the last frame at 2.62 ms (see also figure 5 ) ,  
a spectrum of modes is seen suggesting a snapshot from an experimental flow 
visualization. As can be seen from the figures, some asymmetry exists in the similarity 
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pattern. Structures penetrate further from the centreline on the low-speed side. This 
deflection is also observed in the experiments (see e.g. the shadowgraphs in Brown 
& Roshko 1974 and in Konrad 1976). 

4.2. Asymmetries in the composition of the mixing layers 
Experiments by Koochesfahani et al. (1983) show that there is more high-speed than 
low-speed material entrained and mixed in the coherent structures. These experiments 
investigated the composition of the mixing layers by using a dilute acid solution and 
a dilute base solution for each of the free streams, and examining the extent of the 
titration process. A pH-sensitive fluorescent dye was premixed with the acid solution. 
Then laser-induced fluorescence was used to monitor the local chemical environment 
a t  the shear layer and in the mixed region between the two streams. The amount 
of chemical product was estimated as a function of the amount of (fluorescent) fluid 
having a pH above the fluorescence threshold. Two identical experiments were 
performed in which the faster stream was alternately acidic or basic. Comparison of 
the results indicated that the amount of product was larger by two orders of 
magnitude in the case in which the faster stream was basic. This suggests that  the 
entrainment at the shear layer is asymmetric, with a excess of higher-speed fluid in 
the composition of the mixing layers. 

In order to  evaluate the mixing asymmetries in our calculations, we have simulated 
this fluorescence diagnostic. We assume that the streams of air are prepared as in 
the experiment, namely that one is a dilute ' acid' solution carrying a pH-sensitive 
dye which 'fluoresces' when the pH is above a certain threshold, and the other 
is ' basic '. The acid (plus dye) and base additives to  the streams of gas are small enough 
that convection is not perturbed by their presence. 

We then define a fluorescence intensity I .  Let streams s and f be the acid and base 
streams, respectively. Also let the streams have an equivalence ratio such that 1 part 
of the base stream is required to neutralize 1 part of the acid stream and elevate the 
local pH above the dye threshold. Then, the fluorescence intensity cy a t  cell (i,j) is 

where No is a normalization constant. The index i refers to  the cross-stream (X) 
direction a n d j  refers to  the streamwise ( Y )  direction. I n  addition, we assume that 
a fluorescent portion of the fluid has an excess of base, as in the experiment, and that 
the intensity is proportional to the amount of dye in the cell. This ensures that the 
intensity decreases to  zero in the pure base stream and provides a very simple physical 
cutoff defining the mixing layers. Analogously, we define an intensity ei corresponding 
to the reversed case in which streams f and s correspond to the (acid +dye) and base 
solutions, respectively. Both intensities can then be calculated from the same 
computed data. 

By comparing I f s  and Isf, we can evaluate the mixing asymmetry a t  the shear layer 
in terms similar to those used in the experiment. A smooth exponential interpolation 
was made between 0 and N $ / N o  in defining 4; for X j  in the range 0.95 x xi to 
1.0 x N&. The corresponding interpolation was made for 4;. The normalization 
constant No was defined as No = P/k, T, where P and T are the values of the initial 
uniform pressure and temperature, and k, is Boltzmann's constant. With this 
definition, the fluorescence intensities are between 0 and 0.5. Some representative 
cases are shown in figures 8-10 for V,/ V, = 0, 0.1, and 0.2. The first case corresponds 
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FIGURE 8. Contours of the mixing intensity I ,  as defined by (6), €or VJV, = 0 with V ,  = 2.0 x 104 cm/s. 
Step = 3.00 x lo3, Time = 9.00 x s. Dark blue: 0.005 < I  < 0.125; Turquoise: 0.125 < I  < 0.250; 
Green: 0.250 < I < 0.375; Yellow: 0.375 < Z < 0.500. 

GRINSTEIN, ORAN & BORIS (Facing p .  2 14) 
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FIGURE 9. Contours ofl, for V,/V, = 0.1, and V, = 2.0 X 104 cm/s. Step = 3.20 X 103, Time = 9.60 x 
lO-'s. Key given in figure 8. 

GRINSTEIN, ORAN & BORIS 
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FIGURE 10. Contours of I ,  for VJK = 0.2, and V, = 1.0 x 10Q cm/s. Step = 5.50 x 108, Time = 1.65 x 
lo-%. Key given in figure 8. 

GRINSTEIN, ORAN & BORIS 
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to a quiescent upper stream. The coloured regions indicate the locations where the 
intensities are appreciably different from zero, as determined by the requirement 
I > 0.005. 

Figures 8-10 (plates 1-3) show that, as the velocity ratio increases, the instability 
appears closer to the edge of the splitter plate, and the structures grow faster. This 
result is expected, since the growth rates of the Kelvin-Helmholtz instability increase 
with the velocity difference. We can roughly define fluorescent regions as those 
regions covered by the lighter colours, i.e. those for which I is greater than a threshold 
value I ,  = 0.125, equal to 25 yo of the maximum attainable value. The figures show 
that the fluorescent area is greater when the faster stream is basic and the dye is in 
the slower acid stream. This means that the mixing layer has more of the faster than 
of the slower fluid. 

In order to get a global measure of the asymmetry, we consider a ratio of effective 
fluorescent areas, Q( Y ) ,  defined by 

j-Jo i-1 

The sum over the index i is in the cross-stream X-direction and N ,  is the number 
of cells in that direction. The sum over the indexj extends over computational cells 
from the tip of the splitter plate, at  location Y,, cell J ,  to a cut-off distance Y at cell J .  
The quantity A ,  is the area of the cell ( i , j ) .  

The numerator and denominator in (7) correspond, respectively, to the fluorescent 
areas for the fs (base in the faster fluid, acid + dye in the slower fluid) and sf (acid + dye 
in the faster fluid and base in the slower fluid) flow configurations. Then, a mixing 
region of length ( Y -  Y,) contains more of the faster fluid if &( Y )  is greater than 1.0. 
The average magnitude of ( Q -  1 .O) in the interval ( Y,, Y )  considered gives a measure 
of the mixing asymmetry. Figure 11 shows Q( Y )  as a function of Y for two cases, 
V,/ V, = 0.1 and 0.2, with V, = 2 x lo4 cm/s at 0.9 ms. This figure also shows that the 
mixing asymmetry increases as the ratio of free-stream velocities increases. 

4.3. The effects of boundaries on the mixing asymmetry 
We performed a number of tests to evaluate the sensitivity of the calculations to the 
location of the boundaries and to different forms of outflow-boundary conditions. Our 
studies indicated that the results were not particularly sensitive to these kinds of 
variations. Some representative results involving rather significant changes are shown 
below in figures 12 and 13. 

To test the effects of the location of the boundaries, we added computational cells 
above and below the splitter plate in the cross-stream direction, and a t  the outflow 
boundary in the streamwise direction. Figure 12 shows the ratio of fluorescent areas, 
Q, for two different-sized computational regions for the case in which V,/  V, = 0.1 and 
V, = 2.0 x lo4 cm/s, at 0.960 ms. The smaller region is the 6.13 x 19.44 om2 considered 
before, and the other is a larger 22.30 x 24.9 em2 domain. The shapes and exact 
locations of the maxima and minima of the curves are somewhat different since the 
curves are not for physically identical problems. However, the general features and, 
in particular, the asymmetry patterns are essentially the same. 

In figure 13 we show the sensitivity of the results to changes in the outflow- 
boundary condition. We compare the curves of Q for two different outflow-boundary 
conditions in the case where V,/ V, = 0.2, V, = 1 .O x lo4 cm/s, a t  1.725 ms. The solid 



216 

Q 

F .  F .  Grinstein, E .  S. Oran and J .  P .  Boris 

FIGURE 11. Ratio of fluorescent areas as a function of the streamwise direction at 0.9 ms, for 
V, = 2.0 x lo4 cm/s; solid line: V, /V,  = 0.1, solid line with circles: VJV, = 0.2. 
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FIGURE 12. Ratio of fluorescent areas as a function of the streamwise direction at 0.96 me, for 
V , / &  = 0.1 and V, = 2.0 x lop cm/s; solid line: 6.13 x 19.44 cme domain, solid line with circles: 
22.3 x 24.9 om2 domain. 

line is for an outflow-boundary condition in which the pressure at the outflow 
boundary relaxes to its background value, as given in (1). The solid line with circles 
is for calculations in which the streamwise pressure gradient was set equal to zero 
a t  the outflow. In this case (zeroth-order extrapolation) we neglected the second term 
on the right-hand side of (1). Although this condition is unphysical, it gives a useful 
limiting case. For the times considered, the differences between the curves are only 
slight, showing that the results are insensitive to changes in the outflow-boundary 
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Q 

y (a) 
FIQURE 13. Ratio of fluorescent are- as function of the streamwise direction at 1.73 ms, for 
V,/V, = 0.2 and V, = 1.0 x lo4 cm/s; solid line: relaxation of outflow boundary pressure using (1);  
solid line with circles : zeroth-order extrapolation of the outflow boundary pressure. 

conditions. The pattern of asymmetry is essentially the same. The figure shows, 
however, that the effect of the zeroth-order-pressure-extrapolation condition at  this 
stage is to tend to smooth the structures. 

5. Discussion and summary 
This paper has presented numerical simulations of the evolution of the Kelvin- 

Helmholtz instability for a splitter-plate geometry. These calculations were performed 
using the Eulerian, explicit Flux-Corrected Transport algorithm to solve the 
convective-transport problem. New boundary conditions were developed to allow the 
inflowing material to respond to pressure fluctuations occurring in the computational 
region. New boundary conditions were also developed for the outflow to model the 
relaxation of the gas in the computational domain to the unperturbed ambient gas. 

The focus of this paper is the evolution of the coherent structures in spatially 
evolving mixing layers, with particular emphasis on their composition. The computa- 
tions show a trend in which more fast fluid than slow fluid is entrained in the structures. 
This asymmetry is larger as the velocity ratio of the two streams increases. The 
calculated effect is consistent with the experimental results of Koochesfahani et al. 
(1983), discussed above. We note, however, that the experiments were done using 
liquids, while the calculations considered a fast-moving (but subsonic) gas. In 
addition, the computational model only measures the large-scale features of the 
mixing layers, i.e. convective mixing, since molecular diffusion is not included. 

The asymmetric entrainment is a feature inherently associated to spatially 
evolving mixing layers and due to the symmetry-breaking development of the 
downstream coherent vortical structures, which draw in more faster than slower fluid. 
Hence, it cannot occur in simulations with periodic boundary conditions involving 
equal and opposite velocities. The asymmetry depends directly on the free-stream 
velocity ratio, and should tend to disappear as the ratio tends to unity. This general 
trend is shown by our results, in spite of the rather small velocity ratios considered. 
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The co-flowing system of two streams of air described above is unstable as long 

as the Reynolds number is high enough and there is some small perturbation in the 
system. This perturbation can be an imposed frequency at the beginning of the 
calculation, or simply noise or round-off error. Because feedback is allowed between 
the downstream events and the inflow boundary conditions through the zero- 
pressure-gradient condition a t  the inflow, there is no need to constantly drive the 
instability. 

The mechanism which reinitiates the instabilities close to the inflow boundary 
works through pressure pulses generated at various scales by the fluid accelerations 
caused by downstream vortex roll-ups and mergings. They are required to ensure that 
the flow remains essentially divergence-free everywhere when a coherent structure 
or vortex is locally accelerated. Though these pulses are transmitted acoustically, 
they exist even in the incompressible limit. 

Evidence supporting this mechanism is given by the sequences of panels shown in 
figures 4 and 5 .  The flow structure at 0.975 ms, for example, is both large and irregular 
enough to generate pressure perturbations, which drive noticeable fluctuations 
throughout the computational region. In  addition, the reflection of the pressure pulses 
on the confining walls affects the development of the larger structures which, in turn, 
influence the pattern of formation of new structures upstream. A feedback mechanism, 
in which the upstream flow is influenced by the downstream, was proposed by 
Dimotakis & Brown (1976). This was used to explain unusually long autocorrelation 
times of the streamwise velocity fluctuations observed in the experiments. These 
could not be explained by a local flow property. 

A number of tests were made to  evaluate the importance of the resolution and size 
of the computational region and the location of the solid bounding walls to the mixing 
asymmetry. The resolution tests showed that the large-scale features and the mixing 
asymmetry reported above were adequately resolved by the computational grid 
chosen. The locations of the bounding walls did not appear to  affect the basic calcu- 
lated mixing asymmetry. Also, the mixing asymmetry results were not particularly 
sensitive to  the choice of the outflow-boundary conditions, although using a 
physically correct inflow-boundary condition is extremely important. 

The accuracy of the FCT calculations on variably spaced grids has been tested 
extensively. This was discussed in 53.1. It is important, however, to  consider what 
the variable grid might do for the splitter-plate calculations presented here. We know 
that, as the structures in the calculations move into more widely spaced zones, 
short-wavelength information is damped. Also, as the spectrum of pressure disturb- 
ances created by roll-ups and mergings moves into more finely resolved regions from 
coarser regions, i t  is missing a portion of its short-wavelength spectrum that it would 
have if the zones downstream were finer. The result we have seen is that the large-scale 
structures and features of the asymmetry are not significantly affected by the grid 
spacings. Future investigations will look a t  the finer details of how the re-initiation 
process might be affected by these missing short wavelengths propagating from 
downstream. 

The exact structure of the unstable flow at a given time is very sensitive to 
background conditions, initial conditions, and to  small fluctuations in the system. 
This is the crux of the problem in experiments also: many realizations are possible 
depending on fluctuations in the initial and boundary conditions. Thus, we observe 
that some of the difficulty encountered in the computations reflects the same 
difficulty in the experiments. Both highlight the highly nonlinear sensitivity of the 
system to the boundary and initial conditions. 
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